Multistep Scattered Data Interpolation using Compactly Supported Radial Basis Functions
نویسندگان
چکیده
A hierarchical scheme is presented for smoothly interpolating scattered data with radial basis functions of compact support. A nested sequence of subsets of the data is computed efficiently using successive Delaunay triangulations. The scale of the basis function at each level is determined from the current density of the points using information from the triangulation. The method is rotationally invariant and has good reproduction properties. Moreover the solution can be calculated and evaluated in acceptable computing time.
منابع مشابه
Thinning algorithms for scattered data interpolation
Multistep interpolation of scattered data by compactly supported radial basis functions requires hierarchical subsets of the data. This paper analyzes thinning algorithms for generating evenly distributed subsets of scattered data in a given domain in IR. AMS subject classification: 41A15, 65D05, 65D07.
متن کاملPositive Approximation and Interpolation Using Compactly Supported Radial Basis Functions
We discuss the problem of constrained approximation and interpolation of scattered data by using compactly supported radial basis functions, subjected to the constraint of preserving positivity. The approaches are presented to compute positive approximation and interpolation by solving the two corresponding optimization problems. Numerical experiments are provided to illustrate that the propose...
متن کاملCompactly supported radial basis functions : how and why ? by Sheng - Xin
The use of radial basis functions have attracted increasing attention in recent years as an elegant scheme for high-dimensional scattered data approximation, an accepted method for machine learning, one of the foundations of mesh-free methods, an alternative way to construct higher order methods for solving partial differential equations (PDEs), an emerging method for solving PDEs on surfaces, ...
متن کاملThinning and Approximation of Large Sets of Scattered Data
Having various concrete industrial applications in mind we focus on surface fitting to large scattered data sets. We describe a general method for modelling data which incorporates both filtering using triangulations, and hierarchical interpolation based on compactly supported radial basis functions. The uniformity of the data points plays a significant role. The utility of the method is confir...
متن کاملCreating Surfaces from Scattered Data Using Radial Basis Functions
This paper gives an introduction to certain techniques for the construction of geometric objects from scattered data. Special emphasis is put on interpolation methods using compactly supported radial basis functions. x1. Introduction We assume a sample of multivariate scattered data to be given as a set X = solid to these data will be the range of a smooth function s : IR d ! IR D with s(x k) =...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996